
W

fEEE
CBNIPUTER
s
P

Fast, Three-Dimensional, Collision -Free
Motion Planning

Martin Herman

Robot Systems Division
National Bureau of Standards

Gaithersburg, MD 20899

ABSTRACT

Issues dealing with fast, 3-D, collision -free
motion planning are discussed, and a fast path plan-
ning system under developnlent at NBS is described.
The components of a general motion planner are
outlined, and some of their computational aspects
are discussed. It is argued that an octree represen -
tation of the obstacles in the world leads to fast
path planning algorithms. The system we are
developing uses such an octrec representation. The
robot and i ts swept -volume paths are approximated
by primitive shapes so as to result in fast collision
detection algorithms. The search for a path is per-
formed in the octree space, and combines
hypothesize and test, hill climbing, and A”.

1. Introduction

In order to develop robots that can operate in a wide
variety of situations, fast, collision -free motion planning algo-
rithms are necessary. Most previous planning algorithms have
operated in two dimensions, often for mobile robot applica-
tions. Further, many of these assume that rotation of the
robot can be ignored, and consider translation only. The com-
putational expense of these algorithms would probably increase
dramatically i f applied to the extra degrees of freedom in
three-dimensional motion. Of the planning algorithms
developed for 3-D motion, many are very slow.

This paper discusses some of the issues related to fast 3-D
motion planning, and presents such a system being developed
at NBS. Thc system performs the path search in an octree
space, and uses a hybrid search technique that combines
hypothesize and test, hill climbing, and A l.

2. Computational Aspects of Motion Planning

2.

3.

4.

5.

6.

7.

[Brooks 811, cellular arrays [Srihari 811, octrees [Meagher
82, Jackins & Tanimoto 801, and analytic surface equa-
tions.
World descrbtion acauisition. The world desrription may
be obtained from various sources. These include manual
input, a priori object data bases, sensory recognition
modules, and sensory description modules.

Search space remesentatioa The search for collision -free
paths occurs in a search space. The representation might
be the same as the world representation, but is often
different. Examples of search space representations that
are usually different from world representations are
configuration spares [Lozano -Perez 811, Voronoi-based
spaces [Canny 851, generalized cylinder free spaces
[Brooks 831, and medial axis free spaces [Ruff & Ahuja
841.

World-t-search-mace maminv. When the search space
representation is different from the world representation,
a procedure that maps the world to the scarch space is
required.

High-level task planner. In this component, the overall
task of the robot is planned. Information about specific
position constraints on the robot are sent to the path
planner, which finds a collision -free path satisfying these
constraints.

Path planner. This cornponcnt uses a set of search tech -
niques to find collision -free paths in the search space.

Traiectorv danner. This component converts the path
obtained by the search process into a trajectory that can
be executed by the robot. Typically, the path planning
process is concerned only with collision -free configurations
in space, but not with velocity, acceleration, smoothness
of motion, etc. These factors are handled by the trajer-
tory planner. The output of this component forms the
motion commands to the servo mechanisms of the robot.

This section describes Some major components of a gen- Although these seven components have been described
era1 motion planning system, and discusses their computa - separately, their tasks often overlap and there may be no abs-
tional aspects in the context of various task domains.

A program that automatically generates collision -free Of these components, we will discuss three that often
motions for robots requires the following major components: involve major computational expense: (1) acquiring the world

description, (2) mapping the world description into the search
space description, and (3) performing the search for a path.1. World remesentation. A representation of the robot and

i ts world is required. This representation accumulates the Let us discuss the computational evpense in these three aress

forms a are surface
-based

timcs a path wil l be executed once it is found, (2) the amount
I
node

’’IBwr et ”, Requicha 80]’ swept
vo’

umes
of a priori knowledge available about the robot’s world, and

lu te demarcation between some of them.

description Of the from Outside sources” Common by categorizingtask domains in three ways: (I) the of

Identification of eonlmercial equipment in this paper i s only for adequate description of our work. It
does not imply recommendation by the National Bureau of Standards, nor that this equipnlent wa8
necessarily the best available for the purpose.

U.S. Government Work. Not protected by
US. copyright.

1056

(3) whether the world is basically stat ic or dynamic.

Number of times @Ioath be executed. Industrial parts
can be produced in factories either in large or in small quanti -
ties. When produced in large quantities, single motions might
be performed thousands of times. Therefore, the time involved

in generating trajectories for manipulators is not of great
significance, since this is done offline only once for each task.
The most important consideration is obtaining optimal paths
that are efficient in terms of time of execution, robot wear and
tear, etc. [Kambhampati & Davis 85, Thorpe 841.

When parts are produced in small quantities, single
motions are performed a relatively small number of times. The
time involved in generating trajectories might then become
more important, and should be considered when choosing a
motion planning technique.

JncomDlete vs, comdete a oriori knowledre of the world.
The following kinds of knowledge about the robot’s world are
relevant to path planning: (1) descriptions of the objects that
l ie in the world, (2) the positions and orientations of these
objects at some point in time, and (3) the motions of these
objects as a function of time. The degree of incompleteness in
the knowledge of the world affects which strategies the robot
should use in interacting with the world. If the incompleteness
is in the form of small uncertainty in poses of objects, the
world is said to be uncertain. This occurs frequently in fac-
tory tasks. In such cases, trajectories are commonly generated
offline and executed by an intelligent program which uses force
control, compliance, and simple vision to make minor
modifications to the trajectories [Brady et al. 821.

If the incompletenesq is in the form of unknown objects
in the world or totally unknown poses of objects, the world is
said to be unstructured. In such cases, a large portion of the
trajectories may have to be generated online, after a descrip-
tion of the world has been obtained using complex sensory pro-
cessing for recognition, description, and localization. At this
point, of course, the time involved in generating the trajectory
becomes very important. Le t us consider this expense in terms
of the three areas described previously. First, there is the
expense of acquiring the world description using sensory pro-
cessing and interpretation algorithms. This is a very large
topic and will not be discussed here (see [Hong & Shneier 85a,
Herman 85, Kent e t al. 85, Besl and Jain 85). Second, the
expense of mapping the world description into a search space
description may be significant, particularly since the output
representations of sensory interpretation algorithms are oft.en
different from those used by path search algorithms. Third,
the search itself should be very fast.

Static vs. dvnamic A dynamic world is one that
changes over time. Changes in the world may be due to (1)
motion of the robot, (2) motion of objects, caused by the
robot, (3) motion of objects, not caused by the robot, or (4)
the appcarance or disappearance of objects from the world,
not caused by the robot (here the motion trajectories of the
objects are not known by the robot).

In order to find and maintain collision -free trajectories in
a dynamic world, the search space must be updated as changes
occur. If the world changes in a predictable way, updates to
the search space can be computed offline in advance; in fact
the whole trajectory can be computed in advance. However, i f
the world changes in an unpredictable way, then it is unstruc -
tured, and the previous discussion about unstructured worlds
applies. In addition, updating of the search space should occur

incrementally, since it would probably be very expensive to
regenerate the whole search space when only a small part of it
has changed. Incremental updates are also necessary for static
unstructured worlds where sensory information is obtained
incrementally and trajectories must be generated while parts
of the world are st i l l unknown. Of course, the expense involved
in performing the search in the updated search space is very
important since this must be done online.

3. Faat Path Planning

In this paper, we consider some issues related to fast path
planning in an unstructured, dynamic environment. The term
”fast” is used informally here to specify a practical time frame
in which the robot can plan and execute motions. Generally,
this time frame might be on the order of a few minutes. Since
our focus will be on fast path planning, many of the ideas will
also relate to planning in structured, stat ic environments, such
as planning paths for factory manipulators involved in produc -
ing parts in small quantities.

Many of the approaches attempted previously are not
adequate for this domain. The configuration space approach,
for example, is computationally very expensive. It requires,
first, mapping a world description into a configuration space,
i.e., generating the configuration space obstacles [Lozano-Perez
811. In general, this step is very time consuming. Further, it is
not clear that this can be done incrementally. Second, the
search must be performed in a high-dimensional space.
Although the technique of slice projections [Lozano-Perez 811
reduces the computation involved, the explicit representation
of the high-dimensional space can consume a large amount of
memory. Searching a high-dimensional space can also be very
time consuming. However most approaches share this problem,
whether they represent the space explicitly or implicitly.

Several approaches for explicitly representing free space,
such as with generalized cylinders [Brooks 831, medial axis
transforms [Ruff & Ahuja 841, and Voronoi methods [Canny
851, are not adequate for this domain because of the computa -
tional expense involved in mapping a world description into
the free space description. The free space description is also
very sensitive to object motion.

The potential field approaches [Khatib 85, Buckley &
Leifcr 851 offer excellent possibilities for very fast obstacle
avoidance. However, they suffer from being ”too dumb”; they
often get stuck at local minima in the potential field. These
methods will have to be augmented with smarter, and prob-
ably more computationally expensive, algorithms to serve aa
general path planners.

4. Path Planning in Octree Space

In this paper, we will argue that an octree representation
of the world leads to fast path planning. An octree [Meagher
82, Jackins & Tanimoto 801 is a recursive decomposition of a
cubic space into subcubes. Initially, the whole space is
represented by a single node in the tree, called the root node.
I f the cubic volume is homogenous (completely filled by an
object or completely empty), then the root is not decomposed
at all, and comprises the complete description of the space.
Otherwise, it is split into eight equal subcubes (octants), which
become the children of the root. This process continues until
all the nodes are homogeneous, or until some resolution limit i s

1057

reached. Nodes corresponding to cubic regions that are com-
pletely full are called FULL leaf nodes. Nodes corresponding to
empty regions are called EMPTY leaf nodes, and nodes
corresponding to mixed regions (non-leaf nodes) are called
MIXED nodes.

The techniques for path planning described here m u m e
that octrees are used to represent Cartesian %space, and that
path planning occurs in this space. Octrees have also been
used to represent other search spaces [Faverjon 841. Also, other
hierarchical decompositions of the search space have been pro-
posed [LozanePerez 81).

The following properties of octrees lead to fast path plan-
ning algorithms:

1.

2.

3.

4.

5.

6.

Octrees provide a spatially -indexed representation of the
world. That is, each region of %space is associated with a
list of objects within the region. Therefore, the objects at
each point or region in space can be very quickly
retrieved. This leads to very fast collision detection alge
rithms. During path planning, i f the hypothesized motion
of an object i s represented as the volume the object
would sweep out, potential collisions can very quickly be
found.

Ideally, the search for a path should be performed in a
continuous scarch space. Of course, this potentially leads
to an infinite number of paths to be considered during
search. Octrees provide a decomposition of free space into
cubes, each of which can be treated as a single symbolic
unit (i.e., a node) in a search graph. Links are created

between two nodes only i f their respective cubes are adja-
cent. In this way, the infinite search space is converted
into a finite one.

The hierarchical, multiresolution nature of octrees may be
utilized to improve the speed of search algorithms. In one
technique, for example, only octants at a low resolution
level are represented by nodes in the search graph [Kam-
bhampati & Davis 851. In this way, the graph represents
both low resolution EMPTY leaf nodes and low resolu-
tion MIXED nodes. By dealing only with octants at a
low resolution level, the graph is much smaller and search
proceeds more quickly. Paths within esch MIXED node
region are found separately.

Effcient algorithms exist for converting a polyhedral
object described by its surfaces into an octree description
[Hong 851.

Eficient algorithms exist for incrementally modifying
octrees [Hong & Shneier 85b, Weng & Ahuja 85). These
techniques assume that a separate database of objects in
the world exists. Each object in this database has an
octree representation in the object’s coordinate system.
Incremental modifications to the world octree then consist
of rotating, translating, adding, and deleting the object
octrees. Of course, not all changes in the world need be
immediately reflected in the structure of the octree. Each
addition, deletion, or object transformation can simply be
remembered in a separate data structure. Modifications
to the world octree would then actually take place only
when the path search leads to the relevant regions.

Finally, octrees are often useful for tasks other than path
planning. Because they offer a useful representation of
%space, they can serve as the output representation for
sensory interpretation algorithms [Hong & Shneier 85a,

Connolly 841, they can be used to retrieve objects or
object features lying in a given region of space, or to
solve the hidden feature problem for vcrification vision or
graphics display [Glassner 84, Meagher 821. Thc point is
that in a complete robot planning, control, and sensory
system, octrees may serve in many different kinds of
tasks [Shneier et al. 841. The effective cost of generating
the octrees thus becomes lower when compared to the
cost in systems that must generate a different description
for each task.
The primary disadvantages of octrees are, first, that they

do not provide an exact representation of objects and, second,
that they tend t o require a lot of memory. The first disadvan -
tage can be overcome by using an object’s surfacebased
description when highly precise motions near objects are
required. Since the nodes of the octree have pointers to objects

contained in them, retrieving the objects in a given region of
space is very fast.

The second disadvantage is more difficult to overcome,
but techniques such as dynamically expanding the octree into
higher resolution levels only when needed, or compressing the
octree representation [Gargantini 821, may help. Although spa-
tial decompositions that are irregular [Reddy & Rubin 78,
Lozano -Perez 811 may result in smaller trees, operations on
them such as locating volume elemcnts, finding their positions,
pcrforming translation and rotation, and generating them from
surfacebased object descriptions are usually much slower.

5. N B S Path Planning System

The remainder of this paper describes a fast, three-
dimensional, path planning system under development at NBS.
Our goal is to apply the system to a large class of robots,
including mobile robots (land, air, and underwater), manipula -
tors with both prismatic and rotary joints, and mobile robots
carrying manipulators.

The current implementation of the path planner assumes
that the robot’s external world is static and structured. We
plan eventually to extend the system to unstructured and
dynamic worlds by incorporating sensory processing com-
ponents.

The inputs to the path planner are (1) a description of
the robot, (2) a description of the robot’s external world, in
the form of a single world octree, (3) the configurations of the
robot in the start and goal states. The output of the path
planner is a piecewise linear path in &space. Although pure
translation is currently assumed, methods for incorporating
rotation will be included in our discussion.

Thc path generated is always guaranteed to be collision-
free, although it is generally not the shortest such path
between the start and goal states. Finding the shortest path
requires an expensive search. Fortunately, a ”rcasonably”
short path is adequate for many tasks, and such a path can
often be found quite quickly.

6. Search Techniques
Three basic search techniques are combined to perform

the search through the octree space. The first is hypothesize
and test, and involves hypothesizing a simple path for the
robot by generating the volume it would sweep out during the
motion. Using an algorithm to be described in a later section, a

1058

collision between the swept-out volume and an object in the
octree can very quickly be detected. Two kinds of simple paths
have been considered: linear paths (corresponding to simple

translations) and circular paths (corresponding to simple rota-
tions).

The second search technique is hill climbing. It uses a
cost function whose value at any point in free space is propor-
tional to the Euclidean distance from the point to the goal,
and whose value at any point inside or on the surface of an
object is infinite. The robot is then always made to move to a
neighboring point whose cost is the minimum over all neigh-
boring points.* This search technique is very fast because only
information local to each robot position is used in deciding in
which direction to proceed. The technique is similar to the
potential field technique mentioned earlier, and suffers from
the same major problem: the algorithm can easily get stuck at
a local minimum in the cost function, that is, a point that has
a lower cost than any of i t s neighboring points.

The third technique we use is A l search [Nilsson 71) - a
best-first, tree-structured search method. The technique is
applied to a graph representation of the octree search space,
and it performs a global search through the graph. A search
tree is built up aa the search progresses so that the algorithm
can always proceed with the path with lowest cost. Portions of
many different paths may therefore be explored before a solu-
tion path is finally found. A ' search is therefore more compu-
tationally expensive (on average) than hill climbing. However,
the minimal cost path in the search graph is always found if
i,the heuristic value of the cost function at any given point,
is always less than the actual mimimal cost path from the
point to the goal. A search algorithm with this property is said
to be admiasible [Nilsson 711. In the current implementation,
the value of 6 at a point i s the Euclidean distance from the
point to the goal.

In the future, we intend to use a fourth technique in per-
forming the search, involving a multiresolution search strategy.
With this technique, the search is actually performed at rela-
tively low resolution levels in the octree (refer to the work of
[Kambhampati & Davis 851 described earlier). Many MIXED
nodes are treated as leaves during the search. Paths within
each of these node regions are found separately.

The three techniquev described above are combined in an
attempt to achieve the greatest speed in finding free paths in a
variety of world configurations. The search is performed on a
graph obtained by connecting the centers of all adjacent
EMPTY leaf octants in the octree. Fig. 1 shows the appear-
ance of such a graph for a quadtree example (also see [Kam-
bhampati & Davis 851). The graph is not explicitly created
before the search begins; it is implicitly formed as needed dur-
ing the search process.

The basic operation of the combined search algorithm is
as follows. Beginning at the start state, hill climbing search is
performed, If a local miminum is reached, A ' search i s
invoked, beginning at the point at which hill climbing got
stuck (see Fig. 1). The purpose of the A ' search mode is to
get out of the valley around this local minimum and over a
peak or ridge. At this point, hill climbing may be reinvoked
because the robot cannot return to the position at which the
local minimum occurred. The process of switching between the
two search modes continues until either the goal is reached, or

*The term "hill climbing " in this c ~ s eis deceiving. Perhaps a better term is

"valley descending. "

s ta r t

Figure 1: Search graph in which hill climbing and A ' searches are
performed. The start and god p i t i o n s are shown in blocks 12 and 5,
respectively. Hill climbing initially finds a path through blocks 12, 0,
and 10. A ' is then invoked nnd finds a path through blocks 10, 8,
and 2. Hill climbing is then reinvoked and finds a path through blocks
2, 3, 4, and 5. AB indicated in the text, a sweptvolume path will actu-
ally be generated from block 2 to the goal, immediately finding the
solution path. In this figure, however, we have shown how the search
would proceed from block 2 without this.

it is determined that no path to the goal exists. The two
search modes provide hypothesis paths for the hypothesize and
test technique described earlier. This is done in two ways.
First, in determining whether or not a path from one node to
an adjacent node in the graph is valid, a linear swept volume
for the robot is generated between the two node positions. I f
no collision with an obstacle is detected, the path is valid.
Second, at every node reached during the search, a linear
swept volume to the goal is generated. I f this volume does not
intersect an obstacle, a solution is obtained. Otherwise, the
search proceeds as described above.

In general, this algorithm will not result in a minimum
cost path from the start to the goal node. The hill climbing
mode may lead the robot away from such a path. However,
the algorithm will always result in a solution path if one exists
(in the search graph). There may be solution paths outside the
search graph which, of course, the algorithm will not find. To
see why, consider the following. Let d, be the cost (during hill
climbing search) of node n, in the graph. During hill climbing,
either the goal will be reached or a local minimum will be
reached. For example, suppose node n, is reached during hill
climbing. Three conditions may occur at this node. If d,
equals the global minimum, then the goal has been resched. If,
for each neighbor nI ,d, I d , , then a local minimum has been
reached. If there is a neighbor nt such that d, >4 and dk is
a minimum over all neighbors of n, , then the algorithm will
proceed to n k . Suppose now that A ' is invoked at a local
minimum node n, . Then if it were allowed to run to comple-
tion, it would always reach the goal if a path to the goal
exists. This is because A ' is admissible, as described earlier.
However, if it first reaches an intermediate node n, such that
dj <d, , hill climbing search will be reinvoked. During hill
climbing, the algorithm can never v is i t node n, again, since
d, >d, . Therefore, the algorithm will always result in a solu-
tion path if one exists.

1059

7. Obtaining Succeswr Nodes During Search
As described earlier, the search graph is implicitly formed

as needed during the search. This occurs by dynamically
finding the neighbors, or 8uccc88or8 [Nilason 711, of a node in
the graph when it i s visited. Let n be the current node visited,
e, a possible successor node, and d(m) the cost at any node
m (for hill climbing). To obtain a successor node during hill
climbing mode, the following steps are taken.

1. Obtain all e, such that
(a) u, is at a neighboring point of n,
(b) (I, is in an EMPTY octant,

(e) d(e, Wd(n 1, and
(d) d(u,) has not yet been computed during the current

invocation of hill climbing. (If it has already been
computed, then d(e,) must be greater then d(n).
Otherwise, the search would not have reached n.)

2. I f the set {e,)= NULL, a local minimum has been

3. Set p to the potential successor aj with minimum d.

4. I f there is a linear free path from n to p, p is the suc-

5. Otherwise, remove p from (8, }, and go to step 2.

reached at node n, so exit.

cessor node.

During A ’ search mode, there will, in general, be more
than one successor for each node. A search tree is generated
during the search wherein the successors of each node form the
children in the tree. The node e, is a successor of node n if
1. e; is at a neighboring point of n,

2. 8; is in an EMPTY octant,

3. successors of have not yet been obtained during
current invocation of A *,**

4. there is a linear free path from n to e; .

8. Primitive Shapes

Thus far, we have discussed how the objects in

the

the
robot’s world are represented in the form of a single world
octree. In order to detect potential collisions, the swept volume
representing the robot’s path must also be represented. One
technique used previously is to represent both the swept
volume and the world as octrm [Ahuja e t al. 8 0 1 . Collision
detection then consists of traversing the two octrees in paral-
lel. It is assumed here that both octrees are expressed in the
same coordinate system. I f a node in one tree is FULL while
the corresponding node in the other tree is MIXED or FULL,
an intersection exists (also see [Boaz & Roach 851 . The prob-
lem with this approach is that a complete octree must be gen-
erated for each hypothesized swept-volume path. The
approach that we use compares the swept volume itself, rather
than an octrce of the swept volume, to the world octree.

In our approach, the articulate parts of the robot, as well
BS the sweptvolume paths of the robot, are approximated by a
set of primitive shapes. Recause the robot is always fully con-
tained in i ts approximating shapes, a free path for the shapes
is always a free path for the robot. The converse is not true.

There are three requirements for defining a primitive
shape. The first is that computing whether or not the shape
intersects an object in the octree should be fast. Our primitive
*tSlnce the conulatcncg mumptlon for h is satisfied [Nilwon 711,Inode

need never be reexamined once i t s successors have been obtained.

shapes are therefore defined in terms of a spine - either a
simple curve or simple surface segment -- and a radius - a
single extent outward from the spine that defines the shape’s
surface. Ry representing octants in the octree as spheres, the
intersection test merely involves determining the shortest dis-
tance from the center of a sphere to the spine of the primitive
shape, and checking whether or not this distance exceeds the
sum of the radii of the sphere and shape. More of this will be
described later.

The second requirement for a primitive shape is that it
should be a reasonable approximation to a part of the robot or
a swept volume. The third requirement is that generating
primitive shapes used to represent swepbvolume paths should
be very fast. This is because the particular shape must be
dynamically generated during search. Many of the shapes are
therefore defined as translational or rotational sweeps of some
other primitive shape.

Some primitive shapes we have considered are the follow-
ing:

1.

2.

3.

4.

5.

(Fig. 2a). Defined by a center point and a radius.

Gvlsnhere (Fig. 2b). The volume swept out by linear
translation of a sphere. Defined by the radius of the
sphere and the two end points of the line segment form-
ing the spine.

Translation -sweat cvlsDhere (Fig,IC).The volume swept
out by linear translation of a cylsphere. Defined by the
radius of the cylsphere and the four end points of the
parallelogram forming the spine.

5otaotation -swent cvlsohere. The volume swept out by rota-
tion of a cylsphere about an axis intersecting and perpen-
dicular to i t s spine. There are two types. For type 1 (Fig.
2d), the rotation angle is less than 180 degrees; for type 2
(Fig. 2e), the angle i s greater than 180 degrees. Type 1 is

defined by the radius of the cylsphere and the two wedge
slices meeting at their apexes that form the spine. Type 2
is defined by the radius of the cylsphere and the pie seg-
ment that forms the spine.

Torus (Fig. 2f). The volume swept out by rotation
of a primitive shape about an axis that d m not intersect
the shape.

Fig. 3 indicates how the hand of an IBM 7565 robot
might be represented by primitive shapes. Notice that the
cables connected to the hand must also be contained in the
primitive shapes. Sweptvolume paths of the robot might then
be formed as follows. To perform some translation of the robot
hand, the free space required is a set of translation -swept cyl-
spheres generated for each cylsphere in the description. To
perform a given rotation about axis B, the free space required
for PART 1 is in the shape of a cylsphere, and for PARTS 2,
3, and 4, torus sections. To perform a given rotation about
axis C, the free space required for PART 2 is a rotation -swept
cylsphere of either type 1 or 2, and for PART8 3 and 4, torus
sections.

9. Coll i ion Detection

The following algorithm is used to determine whether or
not a primitive shape interseets any obstacles represented in
the world octree. First, associated with each swept -volume
primitive shape is a set of curves within i t s volume that follow
the sweep used to form the shape. I f the shape is formed by

1060

Axis B

Axis C

8
(a) Sphere

(d) Rotacion-swep t
cylsphere o f type 1

Axis A

Cylsphere

r

(e) Rot a t ion-swep t cylsphere

Figure 2: Some primitive shapes.

of type 2

(c) Transla tion-swep t
cylsphere

(f) Torus sec t ion

Figure 4: (a) Straight -line segments inside
Circular arc segments inside volume.

Figure 3: Representing the hand of the IBM 7565 robot.
Each articulate part is represented as a primitive shape.
Rotations of the hand may occur about axes A, B, or C.

Pr im i t i ve shape

I
I highest resolut ion

I I /block t o t a l l y containinn

I

volume. (b)

Figure 6

1061

translational sweep, the curves are straight line segments (Fig.
4a). If the shape is formed by rotational sweep, the curves are
circular arc segments (Fig. 4b). The curves within the volume
of the shape are individually tested to see if any intersects an
obstacle. This test is extremely fast [Glassner 84). If there is
an intersection, then of course the shape also intersects the
obstacle. If there is no intersection, a more detailed test must
be performed on the shape, for some other part of the shape
may still intersect an obstale.

The more detailed test involves performing a breadth-
first traversal of the octree, and checking for an intersection
betwecn each FULL node and the primitive shape. Using a
breadth -first, rather than depth-first, traversal insures that, if
there is a FULL node at a low resolution level that intersects
the shape, it will be found quickly, before much of the rest of
the tree is examined.

To avoid visiting and checking for intersection with tm
many unnecessary nodes in the octree, the highest resolution
octant totally containing the bounding box of the primitive
shape is initially found (Fig. 5). The breadth -first traversal
then occurs within the subtree rooted at this octant. In
addition, the children of a MIXED node are not visited unless
the node overlaps the bounding box of the primitive shape.

When a FULL node is reached during the traversal, the
following tests are performed.

1. Ifthe octant and bounding box of the primitive shape do
not overlap, there is no intersection.

2. Let us define the outer sphere aa the smallest sphere that
completely contains the octant, and the inner sphere 89

the largest sphere contained completely within the octant
(Fig. 6). If the primitive shape intersects the inner
sphere, there is an intersection with the octant [Hong &
Shneier 85b].

3. I f the shape d m not intersect the outer sphere, there is
no intersection with the octant.

4. Ifthe shape intersects the outer but not the inner sphere,
then

(a) if the octant is at the highest resolution level,

(b) otherwise, divide the octant into 8 suboctants, and

assume an intersection,

for each suboctant, proceed from step 1.

10. Conclusion

This paper has discussed several issues related to fast, 3-
D, collision -free motion planning. The NBS path planning sys-
tem, which is currently under development, has been intro-
duced. The interesting aspects of the system are that (1) path
planning occurs in Cartesian %space represented as an octree,
(2) a hybrid search algorithm is used that combines
hypothesize and test, hill climbing, and A l, and (3) primitive
shapes are used to approximate Ihe robot and i ts swept
volume paths so as to result in fast collision detection algc-
rithms.

As described thus far, the search algorithm does not
explicitly handle rotations. We plan to incorporate rotations
by decoupling them from translations. That is, the final
motion of the robot would involve a mixed sequence of pure
translations and pure rotations. This is a common technique
used to overcome the huge computational cost associated with
searching in a complete high-dimensional space [Brooks 83,

Lozanc -Perez 811.

We also plan to test our algorithms on several robots,
including the IBM 7565 robot. Our aim is to develop a system
that works in a variety of real-world situations.

Acknowledgernenta

Tsai Hong and Mike Shneier have provided excellent
ideas and criticism throughout the course of this work. In
addition, they read and commented on an earlier version of
this paper. Valuable comments were also provided by Ted
Hopp, Ernie Kent, and Ron Lumia.

References

1. Ahuja, N., Chien, R.T., Yen, R., and Bridwell, N.
"Interference detection and collision avoidance among
three dimensional objects. " Proc. First Annual National
Conf. on Artificial Intelligence, Stanford University,
August 1980, 44-48.

2. Baer, A., Eastman, C., and Henrion, M. "Geometric
modelling: a survey. " Computer -Aided Design, 11, 1979,
253-272.

3. Bed, P.J. and Jain, R.C. "Three-dimensional object
recognition. " Computing Surveu8, Vol. 17, No. 1, 1985,
75-145.

4. Boaz, M. and Roach, J. "An octtree representation for
three-dimensional motion and collision detection. " SIAM
Conf, on Geometric Modeling and Robotiea, Albany, New
York, July 1985.

5. Brady, M., Hollerbach, J.M., Johnson, T.L., Lozano-
Perez, T., and Mason, M.T., eds. Robot Motion: Planning
and Control. MIT Press, Cambridge, 1982.

6. Brooks, R.A. "Symbolic reasoning among 3-D models
and 2-D images." Artificial Intelligence, 17, 1981, 285
348.

7. Brooks, R.A. "Solving the find-path problem by good
representation of free space." IEEE Trans. on Systems,
Man, and Cybernetics, Vol. SMC-13, No. 3, 1983, 19G
197.

8. Bucklpy, C.E. and Leifer, L.J. "A proximity mctric for
continuum path planning. " Proc. Ninth International
Joint Conf. on Artificial Intelligence, h s Angeles, CA,
August 1985, 1096-1102.

9. Canny, J. "A Voronoi method for the pianwmovers
problem." IEEE International Conj. on Robotics and
Automation, St. Louis, Missouri, March ,1985, 530-535.

10. Connolly, C.I. "Cumulative generation of octree models
from range data." Proc. IEEE International Coni. on
Robotics, Atlanta, GA, March 1984, 25-32.

1062

11. Faverjon, B. "Obstacle avoidance using an octree in the
configuration space of a manipulator. " Proc. IEEE Inter-
national Conj. on Robotics, Atlanta, GA, March 1984,
504-512.

25. Reddy, D.R. and Rubin, S. "Representation of three-
dimensional objects. " Technical Report CMU-CS-78-113,
Department of Computer Science, Carnegie -Mellon
University, Pittsburgh, PA, 1978.

12. Gargantini, I. "Linear octtrees for fast processing of
three-dimensional objects. " Computer Graphics and
Image Processing, 20, 1982,365374.

26. Requicha, A.A.G. "Representations for rigid solids:
theory, methods, and systems. " Computing Surveys,
12(4), 1980, 437-464.

13. Glassner, AS. "Space subdivision for faat ray tracing."
IEEE Computer Graphics and Applications 4 10, October
1984, 15-22.

27. Ruff, R. and Ahuja, N. "Path planning in a three dimen-
sional environment. " Proc. Seventh International Conf.
on Pattern Recognition, Montreal, Canada, July 1984,
188-191.

14. Herman, M. "Generating Detailed Scene Descriptions
from Range Images." Proc. 188.5 IEEE International
Conj. on Robotics and Automation, St. Louis, Miesouri,
March 1985, 425431.

28. Shneier, M., Kent, E., and Mansbach, P. "Representing
workspace and model knowledge for a robot with mobile
sensors. " Proc. Seventh International ConJ on Pattern
Recognition, Montreal, Canada, July 1984, 199202.

15.

16.

Hong, T.-H. Personal communication, 1985.
29. Srihari, S.N. "Representation of three-dimensional digital

images." Computing Surveys, Vol. 13, No. 4, 1981, 399
424.

Hong, T.-H. and Shneier, M.O. "Incrementally construct -
ing a spatial representation using a moving camera. "
Proc. IEEE Conf. on Computer Vision and Pattern
Recognition, San Francisco, CA, June 1985a, 591-596. 30. Thorp, C. E. "FIDO Vision and navigation for a robot

rover." Technical Report CMU-CS-84-168, Department of
Computer Science, Carnegie -Mellon University, Pitts-
burgh, PA, December 1984.

17. Hong, T.-H. and Shneier, M.O. "Rotation and translation
of objects represented by octreea." Robot Systems Divi-
sion, National Bureau of Standards, Gaithersburg, MD,
October 1985b. 31. Weng, J. and Ahuja, N. "Octree representation of objects

in arbitrary motion." Proc. IEEE Cobference on Com-
puter Vision and Pattern Recognition, San Francisco, CA,
June 1985, 524-529.18.

19.

Jmkins, C.L. and Tanimoto, S.L. "Octtrees and their use
in representing three-dimensional objects." Computer
Graphics and Image Processing fd, 1980, 246.270.

Kambhampati, S. and Davis, L. S. "Multiresolution path
planning for mobile robots." Technical Report 127,
Center for Automation Research, University of Maryland,
College Park, MD, May 1985.

20. Kent, E.W., Shneier, M.O., and Lumia, R. "PIPE (P i p
lined Image Processing Engine)." J. Parallel and

Distributed Computing, 2, 1985, 50-78.

21. Khatib, 0. "Real-time obstacle avoidance for manipula -
tors and mobile robots." IEEE International Conf. on
Robotics and Automation, St. Louis, Missouri, March
1985, 50-505.

22. Lozano-Perez, T. "Automatic planning of manipulator
transfer movements. " IEEE Trans. on SystCfm, Man, and
Cybernetics, Vol. SMC-11, 1981, 681-698.

23. Meagher, D. "Geometric modeling using octree encoding."
Computer Graphics and Image Processing, 19, 1982, 129-
147.

Nilseon, N.J. Problem-Solwing Methods in Artificial Intel-
ligence. McGraw-Hill, New York, 1971.

24.

1063

